The Structures of Two Mononuclear Six-Coordinate Oxomolybdenum(V) Complexes Stabilized by the Hydrotris(3,5-dimethyl-1-pyrazolylborate) Ligand

By Sue A. Roberts, Richard B. Ortega, Lisa M. Zolg, W. E. Cleland Jr and John H. Enemark* Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA

(Received 30 June 1986; accepted 5 August 1986)

Abstract

I) [Hydrotris(3,5-dimethyl-1-pyrazolyl)boratolbis(isothiocyanato)oxomolybdenum(V) 1,2dichloroethane solvate, $\left[\mathrm{Mo}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right) \mathrm{O}(\mathrm{SCN})_{2}\right]$, $M_{r}=624 \cdot 3$, monoclinic, $P 2 / m, a=8.640(5), b=$ 19.635 (9), $\quad c=8.761$ (3) $\AA, \quad \beta=112.58(3)^{\circ}, \quad V=$ $1372.3 \AA^{3}, \quad Z=2, \quad D_{x}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=8.36 \mathrm{~cm}^{-1}, F(000)=634, T=293 \mathrm{~K}$, $R=0.060$ for 1636 reflections. (II) Diazido-[hydrotris(3,5-dimethyl-1-pyrazolyl)boratoloxomolybdenum(V), $\quad\left[\mathrm{Mo}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right) \mathrm{O}\left(\mathrm{N}_{3}\right)_{2}\right], \quad M_{r}=493 \cdot 2$, orthorhombic, $\quad P 22_{1} 2_{1}, \quad a=8.958$ (4), $\quad b=$ 10.273 (2), $\quad c=22.928$ (6) $\AA, \quad V=2110 \AA^{3}, \quad Z=4$, $D_{x}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=$ $6.25 \mathrm{~cm}^{-1}, F(000)=1004, T=293 \mathrm{~K}, R=0.057$ for 1382 reflections. In each complex the molybdenum atom is six-coordinate, ligated by a terminal oxygen atom, a tridentate pyrazolylborate group and two pseudohalide groups. The molecular structures of the complexes are nearly identical, differing only in the geometry of the pseudohalide ligands. In (I), the molybdenum atom and the NCS ligand are nearly collinear ($\mathrm{Mo}-\mathrm{N}-\mathrm{C}=171^{\circ}$), whereas in (II) the average $\mathrm{Mo}-\mathrm{N}-\mathrm{N}$ angle is 133°.

Introduction. As part of a continuing investigation of the chemistry of mononuclear molybdenum(V) compounds stabilized by the hydrotris(3,5 -dimethyl-1pyrazolyl)borate ligand (L) (Cleland, Barnhart, Yamanouchi, Collison, Mabbs, Ortega \& Enemark, 1986), we report the crystal structures of the $L \mathrm{MoOX}_{2}$ complexes with $X=\mathrm{NCS}^{-}$(I) and $X=\mathrm{N}_{3}^{-}$(II). The structures of these complexes are of additional interest because their electron paramagnetic resonance (EPR) spectra in frozen solution can be simulated assuming m site symmetry at the molybdenum (V) atom (Collison, Mabbs, Enemark \& Cleland, 1986).

Experimental. The compounds were prepared as described elsewhere (Cleland et al., 1986).

Crystal data (I). Red needles, dimensions $0.45 \times$ $0.20 \times 0.10 \mathrm{~mm}$, Syntex $P 2$, diffractometer, cell constants from 20 reflections with $6<2 \theta<20^{\circ}$. Data

[^0]0108-2701/87/010051-03\$01.50
collection using $\theta-2 \theta$ scans initiated to $2 \theta_{\text {max }}=45^{\circ}$, but after decomposition was observed data collection was limited to $2 \theta_{\text {max }}=35^{\circ}$. Three standard reflections collected every 97 reflections decayed 38%; linear decay correction made. No absorption corrections ($\mu=8.36 \mathrm{~cm}^{-1}$). Space group either $P 2_{1}$ or $P 2_{1} / m$. Structure solved in latter space group. 1936 of the 2518 unique reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$ and $2 \theta<35^{\circ}$ used in the refinement. $R_{\mathrm{int}}=3.9 \%$. Mo position found from Patterson map, other atoms from succeeding difference maps. H atoms included at calculated positions. Final refinement on F (1636 reflections, 169 parameters) resulted in $R=0.060, \quad w R=0.066, \quad S=1.99 . \dagger$ Weights for each reflection were assigned as w $=4 F_{o}^{2} /\left[\sigma^{2}(I)+\left(p F_{o}^{2}\right)^{2}\right]$ with p set to $0 \cdot 03$. $(\Delta / \sigma)_{\text {max }}$ $=0.63$ (a solvent C thermal parameter). ($\Delta \rho)_{\text {max }}$ $=0.90 \mathrm{e}^{\AA^{-3}}$ near Cl . Atomic scattering factors from Cromer \& Waber (1974) and anomalous-dispersion factors from Cromer (1974). Programs SDP (Frenz, 1978) run on a PDP 11/34a.

Crystal data (II). Brown needles, dimensions $0.42 \times$ $0.17 \times 0.13 \mathrm{~mm}$. Data collected by $\theta-2 \theta$ scan method. Cell constants from 15 reflections in the range $20<2 \theta<22^{\circ}$. No absorption corrections ($\mu=$ $6.25 \mathrm{~cm}^{-1}$). $2 \theta_{\text {max }}=50^{\circ}$. Three check reflections every 100 reflections; no decay. Space group $P 2_{1} 2_{1} 2_{1}$. 2152 reflections measured, 1382 with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$ were used in the refinement. Final refinement on $F(161$ parameters) resulted in $R=0.057, w R=0.060, S$ $=1.50 .(\Delta / \sigma)_{\max }=0.035$. Refinement of the enantiomer gave $w R=0.0611$. The difference is significant at the 99.5% confidence level (Hamilton, 1974). ($\Delta \rho)_{\text {max }}$ $=1.16 \mathrm{e} \AA^{-3}$ near Mo. Other experimental parameters same as (I).

Discussion. Each complex contains a six-coordinate Mo atom in a pseudo-octahedral geometry. Both

[^1]complexes are restricted to facial stereochemistry by the pyrazolylborate ligand. Figs. $1\left[(\mathrm{I}), X=\mathrm{NCS}^{-}\right]$and 2 [(II), $X=\mathrm{N}_{3}^{-}$] show the atom labelling. Tables 1 and 2 list the final positional and equivalent isotropic thermal parameters for (I) and (II), respectively. Table 3 gives selected bond distances and angles for both compounds. (I) is required to possess m symmetry by the space group; (II) approximates m symmetry although no symmetry is imposed by the space group. The two molecular structures are nearly identical, differing primarily in the geometry of the triatomic pseudohalide ligands. In (I) the $\mathrm{Mo}-\mathrm{N}(1)-\mathrm{C}(1)$ angle

Fig. 1. View of (I) showing the atom labelling scheme. Hydrogen atoms omitted for clarity. Primed atoms are related to unprimed atoms by a mirror plane. The numbering of the atoms in the pyrazole ring containing $\mathrm{N}(11)$ parallels that shown for the ring containing $\mathrm{N}(21)$.

Fig. 2. View of (II) showing the atom labelling scheme. Hydrogen atoms omitted for clarity. The numbering of the atoms in the pyrazole ring containing $\mathrm{N}(11)$ parallels that shown for the rings containing $\mathrm{N}(21)$ and $\mathrm{N}(31)$.
is $171.0(5)^{\circ}$, whereas in (II) the $\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{Mo}-\mathrm{N}(4)-\mathrm{N}(5)$ angles are 129 and 136°, respectively. The structure of the pyrazolylborate ligand is normal in both complexes (Lincoln, Soong, Koch, Sato \&

Table 1. Atomic coordinates and equivalent isotropic thermal parameters for $\mathrm{LMoO}(\mathrm{NCS})_{2}$ (I)

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.

	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Mo	0.0709 (1)	0.250	0.0719 (1)	3.27 (2)
S	0.3908 (3)	0.4283 (1)	-0.0288 (4)	8.03 (8)
0	-0.1052 (9)	0.250	-0.0981 (8)	4.9 (2)
$\mathrm{N}(1)$	$0 \cdot 1982$ (7)	0.3238 (3)	0.0079 (6)	$4 \cdot 1$ (2)
$\mathrm{N}(11)$	0.3015 (9)	0.250	0.3173 (9)	3.4 (2)
$\mathrm{N}(12)$	0.2773 (9)	0.250	0.4628 (9)	$3 \cdot 4$ (2)
$\mathrm{N}(21)$	-0.0143 (7)	0.3229 (3)	0.2004 (6)	3.8 (1)
N(22)	0.0061 (7)	0.3134 (3)	0.3620 (6)	3.6 (1)
C(1)	0.2785 (9)	0.3682 (4)	-0.0071 (9)	4.3 (2)
C(11)	0.467 (1)	0.250	0.357 (1)	3.9 (3)
C(12)	0.541 (1)	0.250	0.526 (1)	4.9 (3)
C(13)	0.424 (1)	0.250	0.591 (1)	3.8 (3)
C(14)	$0 \cdot 546$ (1)	0.250	0.235 (1)	$5 \cdot 2$ (3)
$\mathrm{C}(15)$	0.442 (1)	0.250	0.763 (1)	5.5 (3)
C(21)	-0.0970 (9)	0.3822 (4)	0.1494 (8)	4.4 (2)
C(22)	-0.127 (1)	0.4098 (4)	0.2789 (9)	5.0 (2)
C(23)	-0.0610 (9)	0.3670 (4)	0.4102 (8)	4.4 (2)
C(24)	-0.146 (1)	0.4084 (5)	-0.022 (1)	6.1 (2)
C(25)	-0.055 (1)	0.3739 (5)	0.5829 (9)	5.7 (2)
B	0.098 (1)	0.250	0.454 (1)	3.5 (3)
Cl	0.2885 (6)	0.4457 (3)	-0.5728 (8)	19.6 (2)
C(S)	0.460 (1)	0.032 (2)	0.484 (3)	30 (1)

Table 2. Atomic coordinates and equivalent isotropic thermal parameters for $\mathrm{LMoO}\left(\mathrm{N}_{3}\right)_{2}$ (II)

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.

	x	y	z	$B_{\text {eq }}\left(\AA^{(}{ }^{2}\right)$
Mo	0.1347 (1)	0.0471 (1)	$0 \cdot 11651$ (5)	3.32 (2)
O	0.0576 (9)	0.1918 (9)	0.1031 (4)	$5 \cdot 0$ (2)
N(1)	0.055 (1)	0.011 (1)	$0 \cdot 1978$ (4)	$4 \cdot 0$ (3)
N(2)	0.121 (1)	-0.0133 (9)	0.2407 (4)	4.0 (2)
N(3)	0.181 (2)	-0.036 (1)	$0 \cdot 2840$ (5)	6.7 (4)
N(4)	-0.017 (1)	-0.068 (1)	0.0825 (5)	3.9 (2)
N(5)	-0.018 (1)	-0.149 (1)	0.0479 (5)	$5 \cdot 5$ (3)
N (6)	-0.023 (2)	-0.233 (2)	0.0130 (7)	10.8 (6)
$\mathrm{N}(11)$	0.276 (1)	-0.138(1)	0.1321 (4)	3.0 (2)*
N(12)	0.4284 (9)	-0.1378 (9)	0.1215 (4)	3.0 (2)**
$\mathrm{N}(21)$	0.267 (1)	0.047 (1)	0.0389 (4)	$3 \cdot 2$ (2)*
N (22)	0.419 (1)	0.0264 (9)	0.0409 (4)	2.9 (2)*
N(31)	0.323 (1)	0.1375 (9)	$0 \cdot 1559$ (4)	2.9 (2)*
N(32)	0.468 (1)	0.0978 (9)	$0 \cdot 1429$ (4)	2.6 (2)*
C(11)	0.245 (1)	-0.263 (1)	$0 \cdot 1503$ (5)	3.4 (3)*
C(12)	0.377 (2)	-0.333 (1)	$0 \cdot 1501$ (5)	$4 \cdot 1$ (3)*
C(13)	0.488 (1)	-0.251 (1)	$0 \cdot 1320$ (5)	$3 \cdot 2$ (2)*
C(14)	0.092 (1)	-0.302 (1)	$0 \cdot 1662$ (6)	$4 \cdot 1$ (3)*
C(15)	$0 \cdot 652$ (2)	-0.283 (1)	0.1238 (6)	4.4 (3)*
C(21)	0.229 (1)	0.070 (1)	-0.0163 (5)	$3 \cdot 6$ (3)*
C(22)	$0 \cdot 360$ (2)	0.073 (1)	-0.0495 (5)	$4 \cdot 1$ (3)*
C(23)	0.474 (1)	0.045 (1)	-0.0135 (5)	$3 \cdot 3$ (2)*
C (24)	0.072 (2)	0.101 (1)	-0.0363 (6)	$4 \cdot 3$ (3)*
C (25)	0.638 (2)	0.038 (1)	-0.0264 (6)	$5 \cdot 3$ (3)*
C(31)	0.336 (1)	0.238 (1)	$0 \cdot 1934$ (5)	3.4 (3)*
C(32)	0.486 (1)	$0 \cdot 265$ (1)	0.2039 (5)	3.9 (3)*
C(33)	0.566 (1)	0.171 (1)	$0 \cdot 1725$ (6)	3.8 (3)*
C(34)	0.205 (2)	0.308 (1)	0.2162 (6)	4.7 (3)*
$\mathrm{C}(35)$	0.732 (1)	0.154 (1)	$0 \cdot 1683$ (6)	4.4 (3)*
B	0.497 (2)	-0.009 (1)	0.0987 (6)	$3 \cdot 1$ (3)*

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ LMoO(NCS) ${ }_{2}$ (I)

Mo-O	1.671 (5)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(1)$	99.1 (2)
$\mathrm{Mo}-\mathrm{N}(1)$	2.024 (5)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(11)$	175.8 (3)
Mo-N(11)	$2 \cdot 303$ (6)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(21)$	95.2 (2)
$\mathrm{Mo}-\mathrm{N}(21)$	2.119 (4)	$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(1)^{\prime}$	91.4 (3)
		$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(11)$	83.7 (2)
		$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(21)$	90.0 (2)
		$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(21)$	165.2 (2)
		$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$	81.8 (2)
		$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{N}(21)$	84.9 (2)
		$\mathrm{Mo}-\mathrm{N}(1)-\mathrm{C}(1)$	171.0 (5)
$\mathrm{LMoO}\left(\mathrm{N}_{3}\right)_{2}$ (II)			
Mo-O	1.668 (8)	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{O}$	91.0(4)
$\mathrm{Mo}-\mathrm{N}(4)$	1.966 (10)	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{N}(11)$	81.9 (3)
$\mathrm{Mo}-\mathrm{N}(1)$	2.030 (9)	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{N}(1)$	88.2 (3)
$\mathrm{Mo}-\mathrm{N}(11)$	2.315 (9)	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{N}(4)$	168.7 (4)
Mo-N(21)	$2 \cdot 137$ (8)	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{N}(21)$	85.1 (3)
Mo-N(31)	$2 \cdot 130$ (8)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(11)$	171.3 (3)
$\mathrm{N}(5)-\mathrm{N}(6)$	$1 \cdot 18$ (2)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(1)$	$100 \cdot 9$ (4)
$\mathrm{N}(1)-\mathrm{N}(2)$	$1 \cdot 171$ (12)	O-Mo-N(4)	100.2 (4)
$\mathrm{N}(2)-\mathrm{N}(3)$	$1 \cdot 155$ (13)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}(21)$	94.3 (4)
$\mathrm{N}(4)-\mathrm{N}(5)$	$1 \cdot 146$ (13)	$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(1)$	84.1 (3)
		$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(4)$	$86 \cdot 8$ (4)
		$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$	80.0 (3)
		$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(4)$	90.7 (4)
		$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(21)$	163.5 (4)
		$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{N}(21)$	93.0 (4)
		$\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}(2)$	129.3 (8)
		$\mathrm{Mo}-\mathrm{N}(4)-\mathrm{N}(5)$	136.(1)

Enemark, 1985). As expected, the $\mathrm{Mo}-\mathrm{N}(11)$ distances trans to the oxo ligands [2.303 \AA (I) and $2.315 \AA$ (II)] are longer than the $\mathrm{Mo}-\mathrm{N}(21)$ and $\mathrm{Mo}-\mathrm{N}(31)$ distances trans to the N atoms of the NCS^{-}or N_{3}^{-} ligands [2.119 \AA in (I), $2 \cdot 137$ and $2 \cdot 130 \AA$ in (II)]. The
high thermal parameters of the solvate atoms in (1) may reflect loss of solvent during crystal decay. No evidence of disorder is present in the difference maps.

The study was carried out using the facilities of the Molecular Structure Laboratory, Department of Chemistry, University of Arizona. We thank the National Institutes of Environmental Health Sciences (ES00966) for partial support. We thank Dr Michael Bruck for valuable assistance and helpful discuisions.

References

Cleland, W. E. Jr, Barnhart, K. M. Yamanouchi, K., Collison, D., Mabbs, F E., Ortega, R. B. \& Enemark, J. H. (1986). Submitted for publication.

Collison, D., Mabbs, F. E., Enemark, J. H. \& Cleland, W. E. JR (1986). Polyhedron, 5, 423-425.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthop-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press.
Hamilton, W. C. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 4.2. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Lincoln, S., Soong, S.-L., Koch, S. A., Sato, M. \& Enemark, J. H. (1985). Inorg. Chem. 24, 1355-1359 and references therein.

Structure of Tetraaqua-bis[μ-(glycylglycinato)-NOO']-dicopper(II) Bis(diphenyl phosphate) Dihydrate

By T. Glowiak and I. Podgórska*
Institute of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland

(Received 18 June 1986; accepted 11 August 1986)

Abstract. $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .2\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{O}_{2}\right]$.$2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=995 \cdot 8$, orthorhombic, $\quad \mathrm{Pca} 2_{1}, \quad a=$ 16.994 (4), $\quad b=5.953$ (2), $\quad c=41.537$ (8) $\AA, \quad V=$ $4202 \cdot 1 \AA^{3}, Z=4, D_{m}=1.57(1), D_{x}=1.57 \mathrm{Mg} \mathrm{m}^{-3}$, $\bar{\lambda}(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=2.72 \mathrm{~mm}^{-1}, F(000)=2056$, $T=294 \mathrm{~K}$, final $R=0.032$ for 4132 non-zero reflections. The structure consists of discrete dimeric $\left[\mathrm{Cu}_{2}-\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ units, uncoordinated diphenyl phosphate monoanions and water of crystallization.

[^2]Within the dimeric complex unit each dipeptide molecule acts as a tridentate ligand through N (amino), O (peptide) and O (carboxyl) atoms. The squarepyramidal environment of each Cu is achieved by two coordinated water molecules, in each case one being in the axial position. There is also evidence of 'sernicoordination' of the second O(carboxylate) atom from an adjacent peptide molecule, at the second axial position of each Cu atom, $\mathrm{Cu} \cdots \mathrm{O}, 2.874$ (3) and 2.727 (4) \AA. The crystal structure is strongly stabilized by a three-dimensional network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
© 1987 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, calculated H -atom positions, and all bond distances and angles not involving hydrogen have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43318 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 © 1987 International Union of Crystallography

[^2]: * To whom correspondence should be addressed.

